Sunday, 7 August 2016

SIMILAR TRIANGLES [ X ] 1

             YASH     CLASSES
    
            1. SIMILAR TRIANGLES    [  X  ]
    1 .The perpendicular  AD  , on the base 
        BC  of a Δ ABC , intersect  BC at D , so that 
         BD = 3CD.Prove that  , 2 AB2 =  AC2   + BC.

   2 . Prove that   three  times  the square  of any  
       side  of  an equilateral  triangle  is equal to
       four times The square  of  its altitude .

   3.  In a rectangle  ABCD  , there is a point    
        which  is joined to each  of the  vertices
        A , B, C and D . Prove that  
          OA+ OC=  OB+ OD2.

   4 .  In  any Δ ABC  AB = AC  and  D is any  
    point  BC . Prove that AB-AD = BD x CD .

  5. Write  Thales theorem  . prove it .

  6. Write converse of  Thales theorem . prove it.    

 7. Write  Pythagoras theorem . prove   it .

 8. Write converse of Pythagoras  and  prove it .

 9. Write area  ratio theorem and prove  it .

10. P and  Q  are  the  mid  points  of  the
      sides  AC  and  BC  respectively  of  a
      triangle  ABC , right  angle  at  C .
      Prove  that ,  [a ] 4 AQ =  4 AC + BC2.
              [ b ] 4 [AQ + BP ] = 5 AB2 .

 11. Using  similar triangles , prove that the line
       drawn  from midpoint  of  one side of triangle
       parallel to another side bisect the side .